Sensitivity analysis of induced seismicity at CO$_2$ injection site
Arshad Shahid1 and HyungMok Kim2,*

In this study, we investigated the sensitivity of controlling factors of CO$_2$ injection on induced seismicity using a multiphase fluid-flow and geomechanics coupled model. The model simulates pressure evolution due to CO$_2$ injection, and resulting changes in stress as well as the petrophysical properties of both reservoir rock and fault zone. The analysis model, in which multiple geological layers and their geometric characteristics were included, contains a sub-vertical fault zone which intersecting the reservoir. Under given conditions, the fault was reactivated by CO2 injection and corresponding seismic moment and magnitude of the induced seismicity were estimated. Throughout the sensitivity analysis, we examined the parameters of injection rate and location, a cyclic injection rather than a continuous injection and their impact on not only the maximum expected magnitude but also the rate of occurrence of the induced seismicity.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2019R1F1A1058711). The source data used in the geological model construction was from Korea Institute of Geoscience and Mineral Resources (KIGAM).

*Corresponding Author: hmkim@sejong.ac.kr

1) 세종대학교 에너지자원공학과 상임연구원
2) 세종대학교 에너지자원공학과 교수